A Semantic analysis of moving objects, using as a case study maritime voyages from eighteenth and nineteenth centuries

Helbert Arenas*, Benjamin Harbelot†, Christophe Cruz‡
Laboratoire Le2i, UMR-6302 CNRS, Departement Informatique, University of Burgundy
7 Boulevard Docteur Petitjean, 21078 Dijon, France

* helbert.arenas@checksem.fr
† benjamin.harbelot@checksem.fr
‡ christophe.cruz@u-bourgogne.fr

Abstract—In this paper we present a model designed to extract knowledge from moving objects tracks. The model uses a perdurantism approach, implemented using Semantic Web technologies. In order to show the capabilities of the model, we employ it to handle a large dataset composed by historic maritime records. By using Semantic Web tools we are able to implement rules and identify user defined patterns. Although there are limitations due to currently available tools, our results are promising.

I. INTRODUCTION

The two main philosophical theories for the representation of objects evolving along time are: endurantism and perdurantism. The first one, endurantism, considers objects as three dimensional entities that exist wholly at any given point of their life. On the other hand, perdurantism, also known as the four dimensional view, considers that entities have temporal parts, timeslices [1]. Each timeslice is a partial representation of the object, valid only for a specific period or point of time. A complete representation of the object along time, is the result of aggregating all its timeslices. From a designer point of view, the perdurantism approach offers advantages over the endurantism one, by allowing richer representations of real world phenomena [2].

Most of current GIS tools use a snapshot approach to study spatial systems. With this type of tools, it is difficult to analyse dynamic phenomena with spatial-temporal dimensions. An alternative to traditional data management approaches is the Semantic Web. This is a set of standards that enable sharing data and semantics of the data on the web. Using Semantic Web related technologies it is possible to develop data models called ontologies specifically designed for reasoning and inference with software mechanisms. Ontologies allow for any given domain, the representation of relevant high level concepts as well as their properties and the relationships between concepts and entities. In this research we use Semantic Web technologies to develop the “continuum model”, an ontology that allows us to represent diverse dynamic entities and analyse their relationships along time. Traditionally ontologies are static in the sense that the information represented in them does not change in time or space. However, previous research such as [3] [4] [1] and [5] aim to fill this gap, by developing ontologies that use a perdurantism approach to handle dynamic entities. The focus of [4] and [5] is on evolving entities represented in space as areas. In this paper we propose an extension of the previous research, changing the focus to moving entities. In this paper, we use as a test bed, historical maritime records. In section II we identify other works in this field. Section III provides a description of the dataset we use. We describe our model and how we implement it in section IV-B. Finally in section V we present our conclusions and indicate our future research in this field.

II. RELATED RESEARCH

Currently new datasets containing large amounts of tracking data are becoming available. These datasets contain the recorded position of a travel entity while it moves in space. In order to extract knowledge from this information a new set of tools and algorithms are being developed in the research world. In [6], the authors present a survey on current approaches and techniques for the definition of semantic trajectories within the field of data mining. This paper describes techniques to create trajectories from raw data, to add semantics to the trajectories and to extract knowledge.

A raw trajectory comprises the record of the position of a moving entity, during a time interval, in which this entity moves for some meaningful purpose. In some domains the identification of the begin and end of the trajectory is evident, while in others might require some domain specific criteria. The positions and intervals allow us to identify possible stops along the trajectory. Additional information can be obtained by linking the trajectory to external datasources. For instance, comparing the track record of a person with a set of places of interest of a city, could tell us what places has the person visited [6].

By analyzing the trajectory, it is possible to identify stops and elements on the route. Then, we can add annotations creating in this way a semantic trajectory. An analysis of the trajectory can also lead to the identification of a particular behaviour of the moving entity. For instance by analyzing the elements on the route of a tracked person we could distinguish a tourist from a pizza delivery service[6].

An implementation of the previously described concepts is presented in [7]. Here, the authors implement their approach
with a relational DBMS, using as a case study data from the annual migrations of white storks (Ciconia ciconia).

An approach that puts more focus on DL based tools is presented in [8]. Here, the authors propose the use of three different ontologies to address the study of moving entities. The first one is called Geometric Trajectory Ontology. This ontology defines the basic concepts for the spatio-temporal definition of the trajectory. Using the elements defined in this ontology we can specify temporal points, areas, lines etc. The second one is called Geography ontology. In this ontology the authors describe natural and artificial features of interest for the specific domain. Finally the third one is called Application Domain Ontology. In this ontology the authors define higher level concept for specific domains. In [8] the authors test their ideas using data from cars equipped with GPS devices. The data is loaded into a commercial relational DBMS with support for ontological data.

In [9], the authors introduce SeMiTri (Semantic Middleware for Trajectories). This software is designed to create annotations by analyzing the geometric properties of the trajectory and linking it to background geographic and application specific data. The proposed system has three parts: 1) Trajectory computation layer, here the raw GPS data is cleaned, raw trajectories are identified and each trajectory is divided into trajectory episodes. 2) Semantic annotation layer, to link the trajectory to areas it crosses, road networks. It also estimates probabilities of association between stops and geographic features using a Markov model algorithm. 3) Semantic trajectory analytics layer, here are the components of the system that compute statistics, and store obtained information. An additional component is the Web Interface, designed to allow the user to define queries and visualize results.

An example of a perdurantism approach for spatial dynamics is [5]. In this research the authors introduce the continuum model. A methodology that can successfully represent the changes of entities in space and property values along time. However, this approach focuses on entities represented as areas, being the approach not well defined for moving entities represented as points. In this paper we further define the continuum model to represent travelling entities. In the next sections we will describe the datasets and the model we propose.

III. DATASETS

In this paper we present a methodology to model spatial moving objects using a Semantic Web approach. Our moving objects are ships from the eighteenth and nineteenth centuries, whose positions have been recorded in logbooks. Between 2001 and 2003 the European Union funded the project CLIWOC (Climatological Database for the World’s Oceans). A product of this project is the digitized version of logbooks of pre 1854 voyages of English, Spanish, Dutch and French ships [10][11].

The CLIWOC datasets became available online in 2003 [12]. The dataset contains 280280 records. Each record on the logbooks contains the position of the ship, as well as meteorological observations (temperature, wind speed, atmospheric pressure, etc.). Figure 1 depicts a map with the recorded logbook observations. Due to technological limitations some of the positions recorded might have spatial errors, as can be noted by observing the positions recorded within land masses.

The creators of CLIWOC, processed more than 3000 logbooks that represent more than 5000 voyages through world’s oceans. Entries in the logbooks were done at noon. For each entry, the officer in charge, registered the observed climatic conditions at the time. The CLIWOC dataset allows scientists to study weather patterns in the eighteenth and nineteenth centuries. By analyzing the records, it is possible to infer the evolution of phenomena such as the Nino Southern Oscillation or the North Atlantic Oscillation. Surprisingly, the dataset represent less than 10% of data available from original documents [12].

The climatic measurements in the logbooks were taken using archaic methodologies. For instance, in the case of the wind force, the measurements were recorded using old terms no longer in use. It is therefore necessary to translate them to modern units for study purposes. This problem was solved by the CLIWOC team with a dictionary that allows the translation from each archaic language vocabulary into Beaufort scale terms [12].

The CLIWOC dataset has been previously used to study climatic patterns. However, as noted by [13], the dataset can be used to other fields. For instance, it is possible to study the spread of technology. Maritime chronometers were popular on ships of the East Indian Company before they became common on Royal Navy vessels. With better location techniques, sailors were able to modify their routes and take advantage of more favourable wind patterns, which meant a modification on the routes. Using the logbooks, it is also possible to study the evolution of the crew health at ships of different countries, along time. From the end of XVIII century, improvements in ventilation, diet and hygiene reduced the amount of diseases in maritime travels. Health information was recorded in logbooks of all the countries in the study, allowing scientist to make comparable studies. Another possible research topic is the influence of seasonal weather patterns on travels. For instance, British and Dutch ships where strongly affected by seasonal weather patterns when travelling to the Indian Ocean. Because of this it was very unusual to see ships of these nationalities sailing in the South Atlantic around November and December [13].

In order to enhance the knowledge we can extract from the CLIWOC dataset, we created a Geography Ontology following the approach suggested by [8]. The geographic entities in this
ontology are the seas and oceans of the world. We obtained this information from a high resolution dataset introduced in [14]. The creators of this dataset based their work on the document S-23, titled Limits of Oceans and Seas published by the International Hydrographic Organization (IHO) in 1953. The vector dataset, although based on an official document, it is not an official document itself. The vector dataset has a very high resolution coastline that is not necessary in our research. In order to facilitate our spatial operations we simplified it using GeoTools.

IV. PROPOSED MODEL

In [4] and [5], the authors introduced the continuum model, an approach well suited to represent dynamic entities represented spatially as areas. Figure 2 depicts the continuum model as described in [5]. This model follows a perdurantism approach. It creates multiple ephemeral representations (timeslices) to depict a dynamic entity. Each timeslice is valid for a determined time interval. A timeslice has four components: 1) An identity, linking it to the object it represents. 2) A set of properties with alphanumeric values, representing different characteristics of the object. 3) A time component that indicates the valid period of time for the timeslice and 4) A geometric component, the ephemeral spatial representation of the entity. The model creates a new timeslice everytime there is a change in the geometry, the identity or in the alphanumeric properties. It is then possible to establish a filiation relationships between a newly created timeslice and the one that originated it.

The continuum model needs to be modified in order to deal with tracking information of travelling entities. Figure 3 depicts our upgraded version of this continuum model. In the new model we have the moving objects as instances of the class Feature. We split the movements of the objects into Trajectories, which are semantic units with a defined start and end spatio-temporal points. The Trajectory itself is composed by a set of timeslices, with the same components as in the original version of the continuum model.

Following the approach suggested by [8] we developed a Geographic Ontology composed by GeographicFeatures. This ontology allows us to extract new knowledge from the tracking information.

A. Model Specification

In our model we define the following concepts:

- **Temporal Points** We can think of the temporal domain as a linear structure $T$ composed by a set of temporal points $P$. The components of $P$ follow a strict order $<$, which forces all points between two temporal points $t_1$ and $t_2$ to be ordered [15].

  $$P^T \subseteq \Delta^T$$

- **Geometries** A set of coordinates that define points, lines, curves, surfaces and polygons.

  $$G^T \subseteq \Delta^T$$

- **Spatial Objects** This class represents any entity with geometric representation.

  $$O \equiv \text{hasGeometry} \cdot G$$

- **Spatio-Temporal Point** We use this class to define points with a spatial and temporal representations.

  $$TP \equiv \exists \text{hasTime} \cdot P \cap \exists \text{hasGeometry} \cdot G$$

- **Moving Features** This class is used to represent entities that change their positions along time.

  $$MF \subseteq O$$

The movement of the feature is divided into semantical units called trajectories.

- **Trajectories** This class is used to represent semantical units of movement, with a defined start and end spatio-temporal points.

  $$TR \equiv \exists \text{hasTimeSlice} \cdot TS \cap \exists \text{isTrajectoryOf} \cdot MF \cap \exists \text{hasStart} \cdot TP \cap \exists \text{hasEnd} \cdot TP$$

- **TimeSlice** This class is used to depict a partial representation of a moving entity. Each timeslice has a
defined geometric and temporal representations. It also has an identity component, that links it to a specific trajectory and a set of alphanumeric properties (TS) that represent diverse characteristics of the entity at the specific point of time defined by its temporal dimension.

\( TS \equiv \exists hasGeometry, G \cap \exists hasTime, P \cap \exists T S \cap \exists isTimeSliceOf, TR \) (8)

- **Geographic Entity** Following the approach suggested by [8], we implement an external ontology, composed by geographical entities GE. By combining the track of moving objects with these external geographic entities we can improve the knowledge extraction. In our test study we use a seas and oceans dataset based on a document published by International Hydrographic Organization (IHO) in 1953 [14].

\[ \mathcal{GE} \subseteq \mathcal{O} \] (9)

Then we can create individuals for each of the classes/concepts. For instance \( TS(t_s) \) indicates that \( t_s \) is an individual of type timeslice (TS). Following the definition of the class TS, we know that the individual \( t_s \) has a geometric component \( t_s, g \) which is an instance of the class G, then \( G(t_s, g) \). The temporal dimension of \( t_s \) is represented by \( t_s, t \), which is an instance of the class Temporal Points (P\( (t_s) \)). The individual \( t_s \) is linked to a trajectory \( (t_s, r) \), and through the trajectory to a specific individual of the type Feature, and in this way it has a defined identity. We represent the alphanumeric properties that describe the characteristics of the timeslice \( t_s \) as \( t_s, r \).

Using the temporal and identity components of the timeslices it is possible to identify a sequence, and in this way establish a filiation relationship between two timeslices. For the relationship to exist, both timeslices must belong to the same trajectory, and there must not exist other timeslice of the same trajectory occurring in between.

\[
\begin{align*}
hasFiliation(t_s1, t_s2) \rightarrow & (after(t_s1, t_s2)) \\
\quad & \land (\neg \exists(t_s \in TS)) \\
\quad & (t_s1_1 < t_s < t_s2) \\
\quad & \land (t_s1_1 = t_s2_1 = t_s1_2)
\end{align*}
\] (10)

Then we can compare timeslices than hold filiation relationships. For instance we can calculate the speed of the moving entity for the interval defined between them. I

\[ speed(t_s1, t_s2) = \left( \frac{\text{distance}(t_s1, t_s2)}{\text{timeDiff}(t_s1, t_s2)} \right) \land [\text{hasFiliation}(t_s1, t_s2)] \] (11)

Using the filiation relationships and the speed calculation, we can identify episodes with unusual behaviours. For instance, a very low speed between two timeslices might suggest a stop. On the other hand, an unusually high speed might suggest errors in the geometric component of one of the timeslices, requiring further attention by the researcher. To identify unusually high speeds, we can calculate the statistics of the speeds of a trajectory.

\[
\begin{align*}
suspiciousFiliation(t_s1, t_s2) \rightarrow & (\text{speed}(t_s1, t_s2) - \text{mean}(tr_{\text{speed}})) > \lambda(\sigma(tr_{\text{speed}})) \\
& \land [\text{hasFiliation}(t_s1, t_s2)]
\end{align*}
\] (12)

Where \( tr \) is a given trajectory, \( \text{mean}(tr_{\text{speed}}) \) depicts the average speed of the trajectory \( tr \). The standard deviation of speed values is represented by \( \sigma(tr_{\text{speed}}) \), while \( \lambda \) represents a scalar value, by default 3.

We can later identify specific timeslices with geometries that require further attention by the researcher.

\[
\begin{align*}
suspiciousTimeSlice(t_s) \rightarrow & \exists \text{suspiciousFiliation}(t_s1, t_s) \\
& \land [\text{suspiciousFiliation}(t_s2, t_s)]
\end{align*}
\] (13)

A suspicious timeslice, only indicates that the speed required to reach this point is unusually high. However, it does not prove that the position of the timeslice is incorrect.

We can extract knowledge by establishing spatial relationships between trajectories with an external geographic entities

\[
\begin{align*}
\text{hasSpatialRelation}(tr, geo) \rightarrow & \exists ts_1, \exists ts_2 \in \text{hasTimeSlice}(tr, ts) \\
& [\text{Intersect}(geo_1, ts_1)] \\
& [\text{Within}(geo_2, ts_2)] \\
& [\text{DistanceWithin}(geo_3, ts_1, ts_2)]
\end{align*}
\] (14)

where \( ts \) is a timeslice \( (TS(t_s)) \), \( tr \) is a trajectory \( (TR(tr)) \) and \( geo \) is an geographic entity \( (GE(geo)) \).

Figure 4 depicts a detailed representation of the continuum model with the CLIWOC dataset. The classes are represented as ellipses while the values for the various properties are represented as squares.

**B. Implementation of the model using the CLIWOC dataset**

The model has been implemented in a Parliament triplestore. We opted for Parliament due to its support for GeoSPARQL. In order to upload the datasets to the triplestore, we developed a program in Java using the Jena and GeoTools libraries. Table I contains a summary of the entities uploaded to the triplestore.

Due to performance reasons, we opted to perform certain operations outside the triplestore, using a Java application instead. For instance, the CLIWOC dataset uses geographic coordinates therefore distance calculation is not a trivial task. We decided to perform this operation with Java, because we could have better control over the results. It was also possible to test different formulas and make performance comparisons.
TABLE I. SUMMARY OF THE ENTITIES UPLOADED INTO THE TRIPLESTORE

<table>
<thead>
<tr>
<th>Count</th>
<th>Ontology Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>280280</td>
<td>TS</td>
<td>Records from logbooks, each record is represented as a timeslice and has a 0 dimensional spatial representation (point). Each timeslice has a link to a trajectory. Each timeslice has also climatic observations and a date entry property.</td>
</tr>
<tr>
<td>5198</td>
<td>TR</td>
<td>Voyages, as identified in the original CLIWOC dataset. Each voyage has a departure and end spatio-temporal point. Each voyage is linked to the ship it corresponds.</td>
</tr>
<tr>
<td>1261</td>
<td>MF</td>
<td>Ships, are the moving features in the ontology. Each ship has the properties : hasShipName, hasNationality, hasCompany and hasShipType. In some cases the value property was not available on the dataset.</td>
</tr>
<tr>
<td>105</td>
<td>GE</td>
<td>Oceans/Seas, represented as polygons. The dataset covers the whole world. It required a simplification process before being uploaded. We simplified the coastlines and removed the islands.</td>
</tr>
</tbody>
</table>

Once the data was uploaded into the triplestore, it was possible to identify the filiation relationship as defined in equation 10. The following query is a SPARQL translation of equation 10. It detects the filiation relationships between timeslices corresponding to the trajectory abc : trajectory_5198.

```sparql
INSERT
{?tsParent abc:hasFiliation ?tsChild.}
WHERE {
abc:trajectory_5198 abc:hasTimeSlice ?tsParent.
abc:trajectory_5198 abc:hasTimeSlice ?tsChild.
?tsParent abc:hasDate ?ParentDate.
?tsChild abc:hasDate ?ChildDate.
}
FILTER
{(?tsParent != ?tsChild) && (?ParentDate < ?ChildDate))}
```

According to [13], British and Dutch vessels on route to the Indian Ocean were affected by seasonal wind patterns. Because of this, vessels of these nationalities were not seen in the Southern Atlantic in the months of November and December. Using the model we can identify these unusual voyages of British ships as:

\[
\text{UnusualTrajectory}(tr) \rightarrow \text{GE}(geo), \text{TR}(tr), \text{TS}(ts) | (geo\_name = 'SouthAtlantic') \land (\exists ts | hasTimeSlice(tr, ts)) \land (Within(ts, geo)) \land (hasMonth(ts, 'November') \lor hasMonth(ts, 'December'))
\]  
\[ (15) \]

Equation 15 can be translated in SPARQL as:

```sparql
INSERT
{?t a abc:UnusualTrajectory.}
WHERE {
?t a abc:Trajectory.  
?m a abc:MovingFeature.  
?m abc:hasShipNationality "British".  
?m abc:hasTrajectory ?t.  
}
FILTER
{?t abc:hasTimeSlice ?ts.  
?ts abc:hasDate ?tDate.  
?tsDate xsd:Month(?tDate)  
?tsGeo geo:AsWKT ?tsWKT.}
```

\[
\text{UnusualTrajectory}(tr) \rightarrow \text{GE}(geo), \text{TR}(tr), \text{TS}(ts) | (geo\_name = 'SouthAtlantic') \land (\exists ts | hasTimeSlice(tr, ts)) \land (Within(ts, geo)) \land (hasMonth(ts, 'November') \lor hasMonth(ts, 'December'))
\]  
\[ (15) \]
The result of this query, will allows us to identify trajectories of ships of British nationality that in the opinion of an expert on the field, follow an unusual trajectory pattern [13].

By using an ontology, we are able to easily identify specific patterns on the data, enabling scientist to better understand large datasets containing records of moving entities.

V. Conclusion

In this paper we present an approach to analyse historical maritime records. Our approach allows the knowledge discovery in large datasets, enabling scientist to identify patterns that might be hidden due to the large size of the dataset.

Our starting point is very basic raw data, from which we produce more sophisticated constructions that allow a better understanding of the events depicted in the dataset.

Currently we use a state of the art triplestore as our data repository, which gives us several advantages: 1) We can maintain formal defined relationships between objects. 2) It allows us flexibility, we can easily define new properties and relations between entities and concepts, and 3) It allows us to operate in large datasets in triple format.

Currently we use Parliament, a triplestore that supports GeoSPARQL, allowing us to perform spatial analysis without additional software. GeoSPARQL is an OGC standard, that comprises a set of functions that extend SPARQL. Thanks to using OGC standards, our approach can be deployed in alternative OGC compliant environments.

We plan to continue our research in the field of semantic modelling of dynamic entities. An interesting field of research is the definition of semantic rules. At the moment there are two submissions to W3C that aim to work in this field: SPIN and SWRL. However, none of them is yet an official W3C standard. In the future we plan to explore the rule definition option, sticking to accepted standards, securing in this way the extensibility of our work.

Acknowledgment

This research is supported by: 1) Conseil régional de Bourgogne. 2) Direction Générale de l’Armement, see: http://www.defense.gouv.fr/dga/.

References


